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The aromaticity concept is one of the most mysterious
in chemistry. For planar cyclic systems with a closed
conjugation system the aromaticity requirement is the
fulfillment of the 4n + 2 Hueckel rule formulated at the
beginning of nineteen thirties [1]. The rule determines
the number of the p-electrons in the aromatic systems
(2, 6, 10, 14, ...) which remarkably coincides with the
number of electrons on the closed electron subshells of
atoms (s, p, d, f, ...). Recently Hirsch suggested another
rule of counting electrons, 2(n + 1)2, for fullerenes and
other cage-like structures possessing three-dimensional
aromaticity [2—5]. The number of electrons determined
by Hirsch rule corresponds to the number of electrons
on the filled electron shell of an inert gas (2, 8, 18,32, ...)
and differs from the number of electrons on the cleosed
subshells of atoms (although sometimes coincides with
it). Therefore two fundamental problems arise: (1) Why
just4n +2 or 2(n + 1)2 and why they are so remarkable;
(2) Does any connection exist between these numbers.
The only statement possible with respect to these numbers
notwithstanding the objects they describe is that both
numbers are even; yet 4n + 2 is not simply even, but
a doubled uneven number, whereas it is not the case with
2(n+1)2.

Let us consider the problem disregarding for some
time the particular chemical nature of the molecules under
discussion, and examine the number of irreducible states
in an arbitrary n-dimensional statses independent of the
nature of objects within, namely, let us consider a space
of states. In a zero-dimensional space obviously a single
state is possible: a point. In a one-dimensional space three
irreducible states are possible: a point, a vector with
a positive direction, and a vector with a negative direction.
In keeping with this reasoning in two-dimensional and
three-dimensional spaces five and seven irreducible states
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respectively are possible (in the latter event these are:
“point”, “to the left”, “to the right”, “up”, “down”,
“forward”, and “backward”). These options exhaust the
possibilities of our three-dimensional space whence
follows a somewhat unexpected conclusion that the
mentioned types of the electron shells (s, p, d , and f)
close the number of the possible sublevel types, and the
existence of 5g (and moreover 64) electrons, and
consequently of g-elements (starting from no. 121, eka-
actinium, tentative symbol Ubu, unbiunium) is impossible.

In the general case the number of irreducible states in
an n-dimensional space equals 2n +1. Returning now to
the rule of counting electrons and considering just the
electrons as the objects in the arbitrary n-dimensional
space we know that they should obey Pauli principle
(maximum two electrons in each state), and the number
of electrons for every closed electron subshell should be
equal to 2(2n +1) =4n +2. Now taking into consideration
that any n-dimensional space includes all the (n—k)-
dimensional subspaces, then the number of electrons
filling all the subshells will be expressed by a sum over
all £ < n and in keeping with the linear series formula
proves to be 2(n+1)2:

n

Y[4n—k)+2] =2n + 1)
k=0

Interestingly, at even » the number of electrons by
Hirsch rule 2(rn +1)2 coincides with the number of
electrons by Hueckel rule 4m +2 at m = 1/2n(n +2).

Initially the Huckel rule was introduced for planar
systems, and the Hirsch rule, for the systems of three-
dimensional aromaticity. But whether all planar systems
obey the Huckel rule, and whether all systems of the
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three-dimensional aromaticity fit to the Hirsch rule?
Strictly speaking, no. Although there are no exclusions
from the 4n +2 rule when correctly applied. There are
some examples of the formal deviations from the Huckel
rule in the polycyclic systems, for instance, the ace-
naphthylene contains12 m-electrons, and pyrene
possesses 16m-electrons, although both are aromatic.
However it means only that the Hueckel rule should be
applied only to the peripheral n-electrons involved in the
ring current in the cycle.

The case of the Hirsch rule 2(r +1)?2 is more complex.
Here it seems practical to separate two types of the
theree-dimensional aromaticity. The first one, “spherical”
as named by Hirsch, has been successfully applied to
fullerenes and heterofullerenes [2, 3, 6-8], but it is difficult
not to agree with Sidorov et al. [9, p. 105], when they
regard as senseless the discussion of forms C{* and
C/Z- that are aromatic in keeping with the rule 2(n +1)2.
The electronic structure of the spherically symmetric
structures was related in [7] to the electronic structure
of'the filled electron shell of the inert gas with the help of
a Gedankenexperiment by extending the size of an atom
from a point to a hollow sphere with a uniform distribution
of the positive charge on its surface and further to the
size of the corresponding polyhedron with distorted
uniform distribution of the charge and its localization on
the vertices of the polyhedron. Interestingly, with the
growing radius of the sphere (pseudoatom) the sequence
of energy levels changes from the usual (1s, 2s, 2p, 3s,
3p,3d, 4s,4p, ...)to “inverted” (1s, 2p, 3d, 2s, 3p, 35, 4p,
4s, ...) because the remoteness from the nucleus results
in stronger destabilization of the s-levels initially most
strongly bound to it. Johansson et al. [7] discuss beside
the limits of application of the rule 2(n +1)2 caused by
the fact that with the growing size of the spherical system
the orbital energy levels approach each other, and the
corresponding states mix.

The three-dimensional aromaticity of the second type
occurring in various cage-like structures (see examples
in [10—17] and references therein) may be called
“spatial”. We believe that the fundamental difference
between the “spherical” and “spatial” aromaticity consists
in the partial conservation of the “spherical” aromaticity
when, for example, fullerene is “rolled” into a planar
structure (as a globe into a map); the planar system
remains aromatic. On the contrary, the broken bond in
the three-dimensional cage-like structure and its

conversion into monocyclic or linear molecule results in
complete loss of the aromaticity. Thus it may be concluded
that with respect to three-dimensional aromatic systems
the Hirsch rule concerns first of all the systems of
“spherical” aromaticity (like fullerenes [2, 3, 6]), and the
Huckel rule is valid for the systems of “spatial” aromaticity
(like adamantane derivatives [10—13], c/loso-carboranes
[14] and -azaboranes [15], dilithium salt of the
tetrasilylcyclobutadienyl dianion [ 16], germanyl clasters
[17] etc.).

It should be stressed in conclusion that both the planar
and three-dimensional aromaticity same as the cor-
responding rules for counting electrons have a common
origin. It is related, on the one hand, to the formal
consideration of an arbitrary n-dimensional space of
states, and on the other hand, to the fact that all
elementary particles in chemistry (electrons, protons, and
neutrons) as the objects in this space are fermions,
obeying the Fermi—Dirac statistics and consequently the
Pauli principle.
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